Trees whose second largest eigenvalue does not exceed √ 5+1 / 2

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On unicyclic graphs whose second largest eigenvalue dose not exceed 1

Connected graphs in which the number of edges equals the number of vertices are called unicyclic graphs. In this paper, all unicyclic graphs whose second largest eigenvalue does not exceed 1 have been determined. ? 2003 Elsevier B.V. All rights reserved.

متن کامل

Graphs with small second largest Laplacian eigenvalue

Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...

متن کامل

Coefficient of restitution does not exceed unity

The well-known statement in the title is proved (with a small but necessary correction) for a ball reflected by a non-deformable wall. The ball is modeled as a collection of classical particles bound together by an arbitrary potential, and its internal degrees of freedom are initially set to be in thermal equilibrium. The wall is represented by an arbitrary potential which is translation invari...

متن کامل

Spectral Characterization of Graphs with Small Second Largest Laplacian Eigenvalue

The family G of connected graphs with second largest Laplacian eigenvalue at most θ, where θ = 3.2470 is the largest root of the equation μ−5μ+6μ−1 = 0, is characterized by Wu, Yu and Shu [Y.R. Wu, G.L. Yu and J.L. Shu, Graphs with small second largest Laplacian eigenvalue, European J. Combin. 36 (2014) 190–197]. Let G(a, b, c, d) be a graph with order n = 2a + b + 2c + 3d + 1 that consists of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics

سال: 2014

ISSN: 2217-5539

DOI: 10.5937/spsunp1402119m